Consensus-Based Decentralized Auctions for Robust Task Allocation Citation

نویسنده

  • Han-Lim Choi
چکیده

This paper addresses task allocation to coordinate a fleet of autonomous vehicles by presenting two decentralized algorithms: the consensus-based auction algorithm (CBAA) and its generalization to the multi-assignment problem, i.e., the consensus-based bundle algorithm (CBBA). These algorithms utilize a market-based decision strategy as the mechanism for decentralized task selection and use a consensus routine based on local communication as the conflict resolution mechanism to achieve agreement on the winning bid values. Under reasonable assumptions on the scoring scheme, both of the proposed algorithms are proven to guarantee convergence to a conflict-free assignment, and it is shown that the converged solutions exhibit provable worst-case performance. It is also demonstrated that CBAA and CBBA produce conflict-free feasible solutions that are robust to both inconsistencies in the situational awareness across the fleet and variations in the communication network topology. Numerical experiments confirm superior convergence properties and performance when compared with existing auction-based task-allocation algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decentralized task allocation for heterogeneous teams with cooperation constraints Citation

This paper presents decentralized methods for allocating heterogeneous tasks to a network of agents with different capabilities, when the rules of engagement dictate various cooperation constraints. The new methods are built upon the consensus-based bundle algorithm (CBBA), and the key extensions to the baseline CBBA are: (a) task decomposition and associated scoring modification to allow for s...

متن کامل

Decentralized Routing and Power Allocation in FDMA Wireless Networks based on H∞ Fuzzy Control Strategy

Simultaneous routing and resource allocation has been considered in wireless networks for its performance improvement. In this paper we propose a cross-layer optimization framework for worst-case queue length minimization in some type of FDMA based wireless networks, in which the the data routing and the power allocation problem are jointly optimized with Fuzzy distributed H∞ control strategy ....

متن کامل

Online Mechanism and Virtual Currency Design for Distributed Systems

As distributed systems increase in popularity and experience resource contention, new resource allocation methods are needed for scalability and manageability. In this thesis, I investigate the use of auctions, a type of market-based methods, as a decentralized resource allocation approach. Agents in auctions individually submit bids that provide critical information, including agents‘ private ...

متن کامل

Asynchronous Decentralized Task Allocation for Dynamic Environments

This work builds on a decentralized task allocation algorithm for networked agents communicating through an asynchronous channel. The algorithm extends the Asynchronous Consensus-Based Bundle Algorithm (ACBBA) to account for more real time implementation issues resulting from a decentralized planner. This work utilizes a new implementation that allows further insight into the consensus and mess...

متن کامل

Consensus-Based Auctions for Decentralized Task Assignment

This thesis addresses the decentralized task assignment problem in cooperative autonomous search and track missions by presenting the Consensus-Based class of assignment algorithms. These algorithm make use of information consensus routines to converge on the assignment rather than the situational awareness of the fleet. A market-based approach is used as the mechanism for task selection, while...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009